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An ordinary, nonlinear, first-order differential equation that describes the permeability of a membrane with
the external diffusional resistance taken into account is obtained. Based on this equation, the rate of penetra-
tion as a function of the physical properties of a gas mixture and the parameters of the membrane element
have been found.

Recently, membrane gas separation has been widely used in such technological processes as the processing of
natural gases, enrichment of air with oxygen, and raising of the concentration of hydrogen in blow-through gases in
ammonia synthesis [1]. The advantages of membrane separation are economy, absence of chemical conversions, long
term of service of the membrane modulus, and the possibility of switching setups into an autonomous mode of opera-
tion [1, 2]. In order to determine the optimal parameters of the straight-through membrane filter, one must have a clear
idea of the basic laws governing gas separation.

At the initial stage of development of membrane technologies, attention was mainly concentrated on the study
of mass transfer in the membrane. In the problem thus stated, the external diffusional resistance to the process of sepa-
ration in the delivery and drainage channels was not taken into account. However, creation of asymmetrical membranes
that simultaneously are highly selective and highly permeable has changed the situation, because the influence of that
resistance has become compatible with the influence of the intramembrane one. Attempts were made to calculate the
convective external diffusional resistance of the membrane element and were generalized in [1]. They were based on
the analogy between the processes of heat and mass transfer on a permeable porous surface and did not take into ac-
count the specifics of precisely membrane gas separation.

Correct description of convective mass transfer of a binary gas mixture in a straight-through membrane ele-
ment (Fig. 1) is given in [3], the main result of which was derivation of an integral equation for the rate of penetra-
tion through the membrane V(x) with account for the external diffusional resistance:
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Here α = 0 corresponds to a plane-frame module and α = 1, to hollow-fiber one. From solution of Eq. (1) it is seen
that the rate of penetration V(x) is changed over the length of the channel. The aim of this work is the solution of
this equation.

We will consider the expression enclosed in the first parentheses on the right-hand side of Eq. (1). In mem-
brane separation of gas mixtures, the rate of penetration V(x) is small, about 10−3–10−1; therefore the third term is
negligibly small in comparison with the first two. Indeed, if we carry out estimation from above, having assumed that
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V(x) = const, then the above-mentioned expression will take the form (α + 1)2(α + 3) const x2/(2 Re ε). Since x
changes from 0 to 1 and const = 10−3–10−1; it is evident that this term can be neglected. Consequently, Eq. (1) can
be written in the form
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We put 
ΛMu0

εδm
 = A and p0 − 
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x = p(x). We will transform Eq. (2) into a differential one, having intro-

duced the notation ∫ 
0

x

V (x)dx = ϕ(x), i.e., V(x) = ϕ′(x). After transition from the variable V(x) to ϕ(x), we obtain
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We transform relation (3) as
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In the solution of the quadratic equation, the minus sign was selected to satisfy the boundary condition at x = 0. We
introduce the notation
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Fig. 1. Schematic of straight-through membrane separation of a gas mixture.
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that allows formula (4) to be represented as
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The ordinary differential equation (5) is easily solved by the Runge–Kutta method and makes it possible to
find the rate of penetration through the membrane with allowance for the external diffusional resistance at the given
parameters of the module. The results of calculation carried out for a number of values of the system parameters (see
Table 1) are presented in Fig. 2.

We considered two cases: a mixture rich in a separable gas (c0 = 0.9) and a depleted mixture (c0 = 0.1). The
concentration of the separated gas cw on the membrane surface was determined, depending on the longitudinal coordi-
nate, from [3] as
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Using the results of calculations, we selected such self-similar variables in which the form of the graphs de-
picting the dependence of the rate of penetration V(x) on A did not change. The graphs presented (Fig. 2) allow one
to determine the optimal length of the gas-separating membrane element that ensures the highest performance of the
module at the given parameters of the system.

TABLE 1. Values of the Setup Parameters Used in the Calculations

Polymer α Λ⋅1015,
mole/(m⋅sec⋅Pa)

δm, µm A⋅108 PeDε⋅103

Cellulose acetate "Gasep" 0 11 0.1 66 46

Polysiloxancarbonate "Karbosil" 0 115 0.2 345 46

Permeable membrane "Dupon" 1 78.6 20 23.6 0.46

Fluoroplastic-42 1 0.62 9 0.41 0.46

Note. The values to calculate the parameters of the setup for membrane gas separation were borrowed from [1]. In all cal-
culation variants, p0 = 55.5⋅103 and u0 = 3 m/sec. For the plane-frame module the value ν = 1.4⋅10–5 m2/sec was used (it corre-
sponds to a pressure of 0.1 MPa); for the hollow-fiber module ν = 1.4⋅10–6 m2/sec (it corresponds to a pressure of 1 MPa).

Fig. 2. Permeability (a) and concentration on the wall (b) vs. the distance from
the inlet onto the channel: 1, 1 ′) plane-frame module; 2, 2 ′) hollow-fiber mod-
ule [1 ′, 2 ′) results for a depleted mixture (c0 = 0.1), 1, 2) for a rich mixture
(c0 = 0.9)].
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NOTATION

c, concentration of a penetrating component; D, coefficient of diffusion, m2/sec; L, length of the channel, m;
M, molar mass of the penetrating component, kg/mole; p

_
, pressure, Pa; p = p

_
(ρu0

2), dimensionless pressure; PeD =
u0R ⁄ D, diffusion Peclet number; R, radius (half-width) of the channel, m; r

_
, radial coordinate, m; r = r

_
 ⁄ R, dimension-

less radial coordinate; Re = u0R ⁄ ν, Reynolds number; u
_
, longitudinal projection of the rate, m/sec; u = u

_
 ⁄ u0, dimen-

sionless longitudinal projection of the rate; u0, mean flow-rate velocity at the inlet to the channel, m/sec; V
__

,
transmembrane velocity, m/sec; V = V

__
L/(u0R), dimensionless transmembrane velocity; x

_
, longitudinal coordinate, m; x

= x
_

 ⁄ L, dimensionless longitudinal coordinate; δm, effective thickness of the membrane, m; ε = R/L, ratio between two
characteristic dimensions of the channel; Λ, permeability of the membrane, mole⋅m/(N⋅sec); ν, kinematic viscosity,
m2/sec; ρ, density, kg/m3. Subscripts: 0, value at the inlet to the channel; m, membrane; w, channel wall. Superscripts:
′, derivative with respect to dimensionless longitudinal coordinate.
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